Lycée B. Monastir

Devoir de synthèse N :1

3^{ème} M₂

P.P. : ALI ZOUHAIER

Durée: 120 minutes

6/12/2006

Exercice 1

$$\mbox{Soit } f: x \mapsto \left\{ \begin{array}{ll} \frac{6-|x|}{3-x} & \mbox{si } x < 2 \\ \sqrt{x^2-4x+20} & \mbox{si } x \geq 2 \end{array} \right.$$

 C_f est la courbe représentative de f dans un R.O.N. $\left(O, \overrightarrow{i}, \overrightarrow{j}\right)$.

- 1/a- Calculer $\lim_{x \to -\infty} f(x)$.
 - **b** Déduire que C_f admet une asymptote Δ dont on précisera.
 - **c** Etudier la position relative de C_f et Δ sur $]-\infty$; 0[.
 - **d** Tracer une allure de C_f au voisinage proche de $-\infty$.
- 2/ Montrer que l'équation f(x) = 0 admet au moins une solution dans [-7; 3].

3/a- Prouver que
$$\forall x \ge 2$$
; $f(x) - x = \frac{-4 + \frac{20}{x}}{\sqrt{1 - \frac{4}{x} + \frac{20}{x^2}} + 1}$

- **b** Calculer alors $\lim_{x \to +\infty} [f(x) x + 2]$.
- **c** Montrer que C_f admet une asymptote oblique Δ' que l'on précisera.
- **d** Etudier la position relative de C_f et Δ' sur $\begin{bmatrix} 2; +\infty \end{bmatrix}$.

Exercice 2

Soient m un paramètre réel et
$$f_m: x \mapsto f_m(x) = \frac{(m-3)x^2 + (m-2)x - 5}{x^2 + 3x - 4}$$

- 1/ Déterminer le domaine de définition de f_m .
- $\mathbf{2}$ / Discuter suivant m la valeur de $\mathbf{lim} \ f_m(x)$.
- 3/ Dans ce qui reste on prend m=5 . La fonction f_5 est-elle prolongeable par continuité en -4 ?

Exercice 3

Dans le plan orienté P dans le sens direct, on considère le triangle ABC tel que

$$\widehat{\left(\overrightarrow{AB}; \overrightarrow{AC}\right)} \equiv -\frac{95\pi}{7} \quad [2\pi] \ \text{et} \ \widehat{\left(\overrightarrow{BA}; \overrightarrow{BC}\right)} \equiv \frac{138\pi}{7} \quad [2\pi].$$

- 1/ Donner les mesures principales de $(\overrightarrow{AB}; \overrightarrow{AC})$ et $(\overrightarrow{BA}; \overrightarrow{BC})$.
- 2/ Calcculer $(\overrightarrow{CA}; \overrightarrow{CB})$; déterminer la nature du triangle ABC.
- 3/ Posons I le milieu de [BC]. Soit E le point de P vérifiant : $E \in \Delta$ la médiatrice de [BC] et $\widehat{(EB;EI)} = \frac{3\pi}{28}$ [2 π]. Le cecle $\mathcal C$ de centre A et passant par B coupe [IA) en N. Montrer que E = N.

Exercice 4

ABCD est un losange tel que $\widehat{ABC} = \frac{\pi}{3}$ et posons AB = a avec a \in IR*.

Désignons par I=A * C et J=B * I.

$$\mbox{Soit E=} \left\{ \mbox{M} \in \mbox{ P tel que } \overrightarrow{\mbox{MA}}. \overrightarrow{\mbox{MC}} + \mbox{MB}^2 \!\!=\!\! \frac{a^2}{2} \right\}.$$

- 1/ Quelle est la nature du triangle ABC ?
- 2/ Parmi les points A, B, C et D lequel est dans E.
- 3/ Montrer que $\forall M \in P$ on a \overrightarrow{MA} . $\overrightarrow{MC} + MB^2 = MI^2 + MB^2 IA^2$.
- **4**/ Montrer alors que E est un cercle de centre J et dont on précisera le rayon en fonction de a.

Bon Travail

Une correction possible

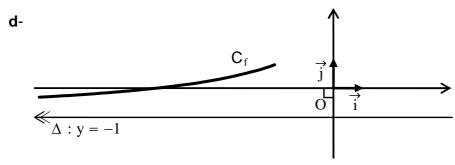
Exercice 1

1/a- $\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{6 - |x|}{3 - x} = \lim_{x \to -\infty} \frac{6 + x}{3 - x}$ car pour x voisin de $-\infty$; |x| = -xd'après un théo. $= \lim_{x \to -\infty} (-1) \qquad \text{après simplificatin}$

b- $\lim_{x \to 0} f(x) = -1 \implies \text{ la droite } \Delta : y = -1 \text{ est une asymptote horizontale}$ à C_f au voisinage de $-\infty$.

c-
$$\forall x \in]-\infty$$
; $0[; f(x) - (-1) = \frac{6 - |x|}{3 - x} + 1$
= $\frac{6 + x + 3 - x}{3 - x}$ **car** $\forall x \in]-\infty$; $0[; |x| = -x]$
= $\frac{3}{3 - x} > 0$

 \Rightarrow C_f est au dessus de \triangle sur $]-\infty$; 0[.



 $2/ \bullet$ la fonction $(x \mapsto x)$ est continue sur IR

- \Rightarrow la fonction (x \mapsto |x|) est continue sur IR
- \Rightarrow la fonction (x \mapsto 6 |x|) est continue sur IR

et comme la fonction $(x \mapsto 3 - x)$ est continue et ne s'annule pas sur IR\{3} alors la fonction $\left(x \mapsto \frac{6-|x|}{3-x}\right)$ est continue sur IR\{3\}.

par suite f est continue $\lceil -7; 2 \rceil$...

- * $f(2) = \sqrt{2^2 4 \times 2 + 20} = 4$
 - * $\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{-}} \frac{6 |x|}{3 x} = 4$ car la fonction $\left(x \mapsto \frac{6 |x|}{3 x}\right)$ est continue en 2. * $\lim_{x \to 2^{+}} f(x) = \lim_{x \to 2^{+}} \sqrt{x^2 4x + 20} = 4$ car $\lim_{x \to 2^{+}} (x^2 4x + 20) = 16$

D'où f est continue en 2.

- la fonction (x \mapsto x² 4x + 20) est continue et positive sur]2; + ∞ [
 - \Rightarrow la fonction $(x \mapsto \sqrt{x^2 4x + 20})$ est continue sur]2; $+\infty$ [
 - \Rightarrow f est continue sur 12,31.

Ainsi: f est continue sur [-7;3]

De plus
$$f(-7) = \frac{6 - |-7|}{3 + 7} = \frac{-1}{10} < 0$$
 et $f(3) = \sqrt{3^2 - 4 \times 3 + 20} = \sqrt{17} > 0$

Donc, le théorème des valeurs intermédiaires, l'équation f(x) = 0 admet au moins une solution dans [-7; 3].

3/a-
$$\forall x \ge 2$$
; $f(x) - x = \sqrt{x^2 - 4x + 20} - x$

$$\begin{split} &=\frac{\left(\sqrt{x^2-4x+20}-x\right)\left(\sqrt{x^2-4x+20}+x\right)}{\left(\sqrt{x^2-4x+20}+x\right)}\\ &=\frac{x^2-4x+20-x^2}{\sqrt{x^2-4x+20}+x}=\frac{x(-4+\frac{20}{x})}{x\left(\sqrt{1-\frac{4}{x}+\frac{20}{x^2}}+1\right)}=\frac{-4+\frac{20}{x}}{\sqrt{1-\frac{4}{x}+\frac{20}{x^2}}+1} \end{split}$$

b-
$$\lim_{x \to +\infty} [f(x) - x + 2] = \lim_{x \to +\infty} \left[\frac{-4 + \frac{20}{x}}{\sqrt{1 - \frac{4}{x} + \frac{20}{x^2}} + 1} + 2 \right]$$

Comme
$$\lim_{x \to +\infty} \frac{20}{x} = 0$$
 et $\lim_{x \to +\infty} \frac{20}{x^2} = 0$ et $\lim_{x \to +\infty} \frac{4}{x}$ alors $\lim_{x \to +\infty} \left[\frac{-4 + \frac{20}{x}}{\sqrt{1 - \frac{4}{x} + \frac{20}{x^2}} + 1} + 2 \right] = \frac{-4}{1 + 1} + 2 = 0$

Donc $\lim [f(x) - (x-2)] = 0$

c- lim $[f(x) - (x-2)] = 0 \Rightarrow La$ droite Δ' : y = x-2 est une asymptote oblique à C_f au voisinage de $+\infty$.

$$\begin{aligned} \textbf{d-} \ \forall x \in \left[\, 2; \right. &+ \infty \right[; \ f(x) - (x-2) \, = \, \sqrt{x^2 - 4x + 20} \, - (x-2) \\ &= \, \frac{x^2 - 4x + 20 - (x-2)^2}{\sqrt{x^2 - 4x + 20} \, + (x-2)} \\ &= \, \frac{x^2 - 4x + 20 - x^2 + 4x - 4}{\sqrt{x^2 - 4x + 20} \, + (x-2)} \\ &= \, \frac{16}{\sqrt{x^2 - 4x + 20} \, + (x-2)} > 0 \end{aligned}$$

Donc C_f est au dessus de Δ' sur $[2; +\infty]$

Exercice 2

$$\boxed{ 1/ \quad f_m(x) } = \frac{(m-3)x^2 + (m-2)x - 5}{x^2 + 3x - 4} \qquad \text{n'existe pas} \qquad \Longleftrightarrow \quad x^2 + 3x - 4 = 0 \\ \Leftrightarrow x = 1 \quad \text{ou} \quad x = -4$$

Conclusion $D_f = IR \setminus \{-4; 1\}$ est le domaine de définition de f_m .

2/ D'abord f_m est une fonction ratinnelle donc on a deux cas:

Premier cas: $m \neq 3$ alors $(m - 3) \neq 0$

$$donc \lim_{x \to +\infty} f_m(x) = \lim_{x \to +\infty} \frac{(m-3)x^2}{x^2} = \lim_{x \to +\infty} (m-3) = m-3.$$

Deuxième cas: m = 3 alors
$$\lim_{x \to +\infty} f_3(x) = \lim_{x \to +\infty} \frac{x - 5}{x^2 + 3x - 4} = \lim_{x \to +\infty} \frac{x}{x^2} = \lim_{x \to +\infty} \frac{1}{x} = 0.$$

3/ On prend | m = 5 |;

$$\lim_{x \to -4^+} f_5(x) = \lim_{x \to -4^+} \frac{2x^2 + 3x - 5}{x^2 + 3x - 4}.$$
• $\lim_{x \to -4^+} (2x^2 + 3x - 5) = 19.$

•
$$\lim_{x \to -4^+} (2x^2 + 3x - 5) = 19$$

$$\Rightarrow \lim_{x \to -4^+} (x^2 + 3x - 4) = 0^-$$

Par suite
$$\lim_{x \to -4^+} f_5(x) = -\infty$$

Alors f₅ n'a pas une limite finie

Donc f₅ n'est pas prolongeable par continuité en -4.

Exercice 3

$$\begin{array}{l} \textbf{1/} \bullet \widehat{\left(\overrightarrow{AB};\overrightarrow{AC}\right)} \equiv -\frac{95\pi}{7} \quad [2\pi] \\ \equiv -\frac{(28 \times 7 - 3)\pi}{7} \quad [2\pi] \\ \equiv -28\pi + \frac{3\pi}{7} \quad [2\pi] \\ \equiv \frac{3\pi}{7} \quad [2\pi] \end{array}$$

Comme $\frac{3\pi}{7} \in \left] -\pi; \ \pi \right]$ alors $\frac{3\pi}{7}$ est la mesure principale de $\left(\overrightarrow{AB}; \overrightarrow{AC}\right)$.

$$\bullet \widehat{\left(\overrightarrow{\mathsf{BA}}; \overrightarrow{\mathsf{BC}}\right)} \equiv \frac{138\pi}{7} \quad [2\pi] \quad \Leftrightarrow \quad \widehat{\left(\overrightarrow{\mathsf{BA}}; \overrightarrow{\mathsf{BC}}\right)} \equiv 20\pi - \frac{2\pi}{7} \quad [2\pi] \\ \Leftrightarrow \quad \widehat{\left(\overrightarrow{\mathsf{BA}}; \overrightarrow{\mathsf{BC}}\right)} \equiv -\frac{2\pi}{7} \quad [2\pi]$$

Comme $\frac{-2\pi}{7} \in \left] -\pi; \ \pi \right]$ alors $\frac{-2\pi}{7}$ est la mesure principale de $\widehat{\left(\overrightarrow{\mathsf{BA}};\overrightarrow{\mathsf{BC}}\right)}$.

$$\begin{array}{l}
\mathbf{2}/\overrightarrow{\left(\overrightarrow{CA};\overrightarrow{CB}\right)} \equiv \overrightarrow{\left(\overrightarrow{CA};\overrightarrow{AB}\right)} + \overrightarrow{\left(\overrightarrow{AB};\overrightarrow{CB}\right)} \quad [2\pi] \\
\equiv \pi + \overrightarrow{\left(\overrightarrow{AC};\overrightarrow{AB}\right)} + \overrightarrow{\left(\overrightarrow{BA};\overrightarrow{BC}\right)} \quad [2\pi] \\
\equiv \pi - \overrightarrow{\left(\overrightarrow{AB};\overrightarrow{AC}\right)} - \frac{2\pi}{7} \quad [2\pi] \\
\equiv \pi - \frac{3\pi}{7} - \frac{2\pi}{7} \quad [2\pi] \\
\equiv \frac{2\pi}{7} \quad [2\pi].
\end{array}$$

Comme $(\overrightarrow{CA}; \overrightarrow{CB}) \equiv (\overrightarrow{BC}; \overrightarrow{BA})$ [2 π] alors ABC est un triangle isocèle en A

3/ ▶ Désignons par N' le second point de rencontre C et (AI).

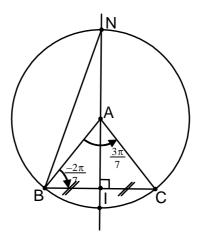
$$\Rightarrow \widehat{\left(\mathsf{AB}; \mathsf{AI} \right)} \equiv \frac{1}{2} \widehat{\left(\mathsf{AB}; \mathsf{AC} \right)} \quad [2\pi]$$

$$\Rightarrow \widehat{\left(\mathsf{AB}; \mathsf{AI} \right)} \equiv \frac{3\pi}{14} \quad [2\pi].$$
..... Or $\widehat{\left(\mathsf{NB}; \mathsf{NN}' \right)} \equiv \frac{1}{2} \widehat{\left(\mathsf{AB}; \mathsf{AN}' \right)} \quad [2\pi]$

$$\equiv \frac{1}{2} \widehat{\left(\mathsf{AB}; \mathsf{AI} \right)} \quad [2\pi]$$

$$\equiv \frac{1}{2} \frac{3\pi}{14} \quad [2\pi]$$

$$\equiv \frac{3\pi}{28} \quad [2\pi]$$



$$\mathsf{Donc}\,\,\widehat{\left(\overline{\mathsf{NB}};\overline{\mathsf{NI}}\right)} \equiv \frac{3\pi}{28} \ [2\pi] \qquad \text{car } \mathsf{I} \in [\mathsf{NN}'].$$

D'autre part aussi $E \in \Delta = \text{m\'ed}[BC]$ et $\widehat{\left(\overline{EB};\overline{EI}\right)} \equiv \frac{3\pi}{28}$ $[2\pi]$ Alors N = E.

Exercice 4

1/ ABCD est un losange tel que $\widehat{ABC} = \frac{\pi}{3}$

$$\Rightarrow$$
 BA = BC et $\widehat{ABC} = \frac{\pi}{3}$

⇒ ABC est un triangle équilatéral.

$$\mathbf{2}/\bullet\overrightarrow{AA}.\overrightarrow{AC}+AB^2=0+a^2\neq \frac{a^2}{2}$$
 \Rightarrow $A\notin E.$

•
$$\overrightarrow{BA}$$
. \overrightarrow{BC} + \overrightarrow{BB}^2 = \overrightarrow{BA} . \overrightarrow{BC} . \overrightarrow{ABC} = \overrightarrow{a} . \overrightarrow{a} . \overrightarrow{a} . \overrightarrow{a} . \overrightarrow{BC} . \overrightarrow{ABC} = \overrightarrow{ABC} .

•
$$\overrightarrow{CA}$$
. \overrightarrow{CC} + CB^2 = $0 + a^2 \neq \frac{a^2}{2}$ \Rightarrow $C \notin E$.

•
$$\overrightarrow{DA}$$
. \overrightarrow{DC} + DB^2 = DA . DC . $\cos \widehat{ADC}$ + DB^2
= a . a . $\cos \frac{\pi}{3}$ + DB^2 = $\frac{a^2}{2}$ + DB^2 $\neq \frac{a^2}{2}$ car DB^2 > 0

 \Rightarrow D \notin E.

$$\begin{split} \textbf{3} / \ \forall M \in \ P \ ; \ \overrightarrow{MA}. \ \overrightarrow{MC} + MB^2 &= \left(\overrightarrow{MI} + \overrightarrow{IA}\right). \left(\overrightarrow{MI} + \overrightarrow{IC}\right) + MB^2 \\ &= \left(\overrightarrow{MI} + \overrightarrow{IA}\right). \left(\overrightarrow{MI} - \overrightarrow{IA}\right) + MB^2 \qquad car \ I = A * C \\ &= MI^2 - IA^2 + MB^2 \end{split}$$

$$\begin{array}{lll} \textbf{4}/\, \textbf{M} \in \textbf{E} & \iff \overrightarrow{\textbf{MA}}. \overrightarrow{\textbf{MC}} + \textbf{MB}^2 = \frac{a^2}{2} \\ & \stackrel{3}{\Leftrightarrow} & \textbf{MI}^2 + \textbf{MB}^2 - \textbf{IA}^2 = \frac{a^2}{2}. \\ & \Leftrightarrow & \left(\overrightarrow{\textbf{MJ}} + \overrightarrow{\textbf{JI}}\right)^2 + \left(\overrightarrow{\textbf{MJ}} + \overrightarrow{\textbf{JB}}\right)^2 - \textbf{IA}^2 = \frac{a^2}{2} \\ & \Leftrightarrow & \left(\overrightarrow{\textbf{MJ}} + \overrightarrow{\textbf{JI}}\right)^2 + \left(\overrightarrow{\textbf{MJ}} - \overrightarrow{\textbf{JI}}\right)^2 = \frac{a^2}{2} + \textbf{IA}^2 & \text{car J} = \textbf{B} * \textbf{I} \\ & \Leftrightarrow & \textbf{MJ}^2 + 2\overrightarrow{\textbf{MJ}}. \overrightarrow{\textbf{JI}} + \textbf{JI}^2 + \textbf{MJ}^2 - 2\overrightarrow{\textbf{MJ}}. \overrightarrow{\textbf{JI}} + \textbf{JI}^2 = \frac{a^2}{2} + \textbf{IA}^2 \\ & \Leftrightarrow & 2.\textbf{MJ}^2 = \frac{a^2}{2} + \textbf{IA}^2 - 2.\textbf{JI}^2. \\ & \Leftrightarrow & \textbf{MJ}^2 = \frac{a^2}{4} + \frac{1}{2}\,\textbf{IA}^2 - \textbf{JI}^2. \end{array}$$

•
$$I = A * C \implies AI = \frac{AC}{2} = \frac{a}{2}$$
.

• J = B * I
$$\Rightarrow$$
 JI = $\frac{1}{2}$ BI = $\frac{1}{2}\sqrt{BA^2 - AI^2}$ = $\frac{1}{2}\sqrt{a^2 - \left(\frac{a}{2}\right)^2}$ = $\frac{\sqrt{3}}{4}a$.

Ainsi
$$M \in E \iff MJ^2 = \frac{a^2}{4} + \frac{1}{2} \left(\frac{a}{2}\right)^2 - \left(\frac{\sqrt{3}}{4}a\right)^2$$

 $\iff MJ^2 = \frac{3}{16}a^2$
 $\iff MJ = \frac{\sqrt{3}}{4}a$

$$\Leftrightarrow$$
 $M \in \mathcal{C}_{\left(J; \frac{\sqrt{3}}{4}a\right)}$ le cercle de centre J et de rayon $r' = \frac{\sqrt{3}}{4}a$